
MFChombo Software Package for Cartesian Grid,

Multifluid Applications

P. Colella
D. T. Graves
T. J. Ligocki
D. Martin

B. Van Straalen

Applied Numerical Algorithms Group
NERSC Division

Lawrence Berkeley National Laboratory
Berkeley, CA

July 8, 2003

Contents

1 Introduction 2

2 Overview of Multifluid Description 3

2.1 Time Dependent Interface Geometries 7

3 Overview of API Design 7

4 Data Structures for Graph Representation 9

4.1 Overview . 9
4.2 Class MFIndexSpace . 10
4.3 Class MFISBox . 11
4.4 Class MFISLayout . 15
4.5 Class VolIndex . 16
4.6 Class FaceIndex . 17

1

5 Data Holders for Embedded Boundary Applications 18

5.1 Class BaseMFIFFAB<T> . 18
5.2 Class BaseMFIVFAB<T> . 19
5.3 Class BaseMFCellFAB<T> . 20
5.4 Class MFCellFAB . 21
5.5 Class BaseMFFaceFAB<T> . 22
5.6 Class MFFaceFAB . 23

6 Data Structures for Pointwise Iteration 24

6.1 Class VoFIterator . 24
6.2 Class FaceIterator . 25

7 AMR Tools for Multifluid computations 27

7.1 C++ Classes for Two-Level Operators 27
7.1.1 The Class MFCoarseAverage 27

7.2 The Class MFFineInterp . 28
7.3 The Class MFPiecewiseLinearFillPatch 29
7.4 The Class MFQuadCFInterp . 30
7.5 The Class MFLevelFluxRegister . 31

1 Introduction

This document describes the MFTools component of the MFChombo distribution. This
infrastructure is based upon the Chombo infrastructure developed by the Applied Nu-
merical Algorithms Group at Lawrence Berkeley National Laboratory [CGL+00], and also
draws heavily on the EBChombo software which extends Chombo for the case of em-
bedded boundaries in a Cartesian mesh. MFTools is meant to be an infrastructure for
Cartesian grid multifluid (MF) algorithms. This software aims to provide a relatively com-
pact set of abstractions in which Cartesian grid multifluid algorithms can be expressed
and implemented. The particular design we propose here is motivated by the following
observations. First, the dependent variables in a finite difference method are represented
as arrays defined on subsets of an index space. Second, the transformations on arrays
can be expressed as combinations of pointwise operations on the arrays, and of sums over
nearby points of arrays, i.e., stencil operations. For standard finite difference methods on
rectangular grids, the index space is the d-dimensional rectangular lattice of d-tuples of
integers, where d is the spatial dimension of the problem. For multigrid or AMR methods,
the index space is the hierarchy of d-dimensional rectangular lattices, where the succes-
sive members of the hierarchy are related to one another by coarsening and refinement
operations. In both of these cases, the stencil operations can be expressed formally as
a loop over stencil locations. In the AMR case, both the stencil locations and the loca-
tions where the stencil operations are applied are computed using a set calculus on the
index space. If one fully exploits this picture to derive a set of abstractions for expressing

2

these algorithms, it leads to a very concise implementation of the algorithms in these two
domains.
The above characterization of finite difference methods holds for the MF algorithms

as well, with the critical difference that the index space is no longer a rectangular lattice,
but a more complicated object. In the case of a non-hierarchical grid representation,
the index space is a combination of a rectangular lattice (the Cartesian grid part) and a
graph representing the irregular cell fragments that abut the irregular boundary. For a
hierarchical method, we have one such index space for each level of refinement, related to
the others by coarsening and refinement operations. In addition, we want to support the
overall implementation strategy that the bulk of the calculations (corresponding to data
defined on the rectangular lattice) are performed using rectangular array representations,
thus restricting the irregular array accesses and computations to a set of codimension
one. Finally, we wish to appropriately integrate AMR implementation strategies for block-
structured refinement with the MF algorithms.
Because of the similarities between our multifluid approach and the embedded bound-

ary approach for complex geometries used in the design of the EBChombo software, we will
borrow heavily from the design and conceptual framework used for EBChombo. For more
information regarding the EBChombo framework, see the EBChombo design documents.

2 Overview of Multifluid Description

Cartesian grids with embedded multifluid boundaries are useful to describe volume-of-fluid
representations of irregular and non-static multifluid interfaces. In this description, geom-
etry is represented by volumes and apertures. The areas / volumes, expressed in dimen-
sionless terms are volume fractions κi = |Vi|h

−d, face apertures αi+ 1

2
es
= |Ai+ 1

2
es
|h−(d−1)

and boundary apertures αBi = |A
B
i |h

−(d−1). We assume that we can compute estimates
of these dimensionless quantities which are accurate to O(h2). See Figure 1 for an illus-
tration. In the figure, the grey area represents one phase and the white region the second
phase; the arrows represent fluxes for the “white” phase, including the flux across the
multifluid interface. A conservative, “finite volume” discretization of a flux divergence
∇ · ~F for the “white” region is of the form:

∇ · ~F ≈
1

κh

∑

~F α · ~Aα

≈
1

κih
(

∑

±=+,−

d
∑

s=1

±αi± 1

2
es
F s(xi± 1

2
es
) + αBi ~n

B
i · ~F (x

B
i)) (1)

This is useful for many important partial differential equations. Consider Poisson’s

3

Figure 1: Multifluid cell. The grey area represents one phase, while the white region is
a second phase in the same Cartesian cell. Arrows indicate fluxes for the white phase
(including one across the white/grey multifluid interface)

equation with Neumann boundary conditions

∇ · ~F = ∆φ = ρ on Ω, (2)

∂φ

∂n
= 0 on ∂Ω.

The volume-of fluid description reduces the problem to finding sufficiently accurate gra-
dients at the apertures. See Johansen and Colella [JC98] for a complete description of
solving Poisson’s equation with embedded boundaries; the approach we will take for mul-
tifluid interfaces will be similar. Hyperbolic conservation laws can be solved using similar
divergence examples. See Modiano and Colella [MC00] for such an algorithm. Gueyffier,
et al. [GLN+99] use a similar approach for their volume-of-fluid application. The only
geometric information required for the algorithms described above are:

• Volume fractions

• Area fractions

• Centers of volume, area.

The problem with this description of the geometry is it can create multiply-valued
cells and non-rectangular connectivity, as in Figure 2. The shaded region represents the
area in one phase while the unshaded region represents a second phase. The solid lines
represent the connectivity of the discrete domain for the shaded phase, while the dashed
lines illustrate the connectivity for the unshaded phase. In addition, the two phases will
generally be linked across the the multifluid interface through interface boundary condi-
tions. Figure 3 illustrates the additional connectivity arising through a simple interface
boundary condition. The software infrastructure must support abstractions which can
express this complexity.

4

Figure 2: Example of a possible multifluid connectivity graph. The shaded region is one
phase, while the unshaded region is a second phase. The dashed lines represent the graph
connectivity of the unshaded phase, while the solid lines represent the connectivity of the
shaded phase. For clarity, connectivity across the multifluid interface is ignored in this
depiction.

Our solution to this abstraction problem is to define the multifluid grid as a graph.
The irregular part of the index space for a phase a can be represented by a graph Ga =
{N,E}a , where N is the set of all nodes in the graph, and E the set of all edges of the
graph connecting various pairs of nodes. Geometrically, the nodes correspond to irregular
control volumes (cell fragments) cut out by the intersection of Ωa with the rectangular
mesh, and the edges correspond to the parts of cell faces that abut a pair of irregular cell
fragments. Interface connectivity between two phases a and b is defined by the set Iab

which determines the connectivity between N a and N b in much the same way that Ea

determines the connectivity between the nodes in N a .
For each phase, the remaining parts of space are indexed using elements of Zd, or are

contained in another phase and not indexed into at all. However, it is possible to think
of the entire index space (both the regular and irregular parts) as a graph: in the regular
part of the index space, the nodes are just elements of Zd, and the edges are the cell
faces that separate pair of successive cells along the coordinate directions. If we used this
representation for the entire calculation, the method would correspond to a unstructured
grid method. We will use this specification of the entire index space as a convenient
uniform interface to both the structured and unstructured parts of the index space.
We discretize a complex problem domain as a background Cartesian grid with an

5

Figure 3: Multifluid example from Figure 2, illustrating connectivity between phases across
the multifluid interface.

Figure 4: Decomposition of the grid for the unshaded phase into regular, irregular, and
covered cells. The grey cells are outside the domain for the unshaded phase.

embedded boundary representing the irregular domain region. See Figure 4. We recognize
three types of grid cells or faces: a cell or face that the multifluid interface intersects is
irregular. A cell or face in the irregular problem domain which the boundary does not
intersect is regular. A cell or face outside the problem domain for the given phase a is
covered. In practice, we will not allow a multifluid interface to coincide with a cell face;
instead the interface will be considered to be a small distance ε from the interface, and
will be entirely on one side of the interface. This will help simplify connectivity issues.
An irregular volume of fluid (VoF) is formed from the intersection of a grid cell and

the irregular phase domain Ωa . We represent the segment of the multifluid interface
as a single flat segment. Quantities located at the multifluid boundary are given the
superscript B.
A VoF has a volume κhDim, where κ is its volume fraction. A face has an

area `h(Dim−1), where ` is its area fraction. The polygonal representation is reconstructed
from the volume and area fractions under the assumption that the VoF has one of the

6

shapes above. Since the boundary segments are reconstructed solely from data local to
the cell, it will typically not be continuous with the boundary segment in neighboring cells.
We also derive the normal to the multifluid face n̂ and the area of that face `Bh(Dim−1).

2.1 Time Dependent Interface Geometries

Because interfaces move as a function of time, MFChombo also has the concept of time as
an integral part of the geometry. As the geometry changes, the graph and its connectivity
will change over time as well. For example, Figure 5(a) illustrates a possible evolution of
a multiphase interface and the changing connectivity graph of the unshaded phase. Note
that the two VoFs at the old time in the rear left cell merge, while the VoF in the rear
right cell splits as the geometry of the interface evolves. The changing geometry means
that there is a connectivity graph in time (illustrated by the dark solid lines) as well as
space (illustrated by the dashed lines at each time level). The additional connectivity
in time and space leads to the concept of a data graph, which is the simplest possible
connectivity graph based on the aggregate old- and new-time connectivity. For example,
the data graph for the time-dependent geometry shown in Figure 5(a) is shown in Figure
5(b). The key feature of the data connectivity graph is that VoFs in a single cell which
are linked by time connections in the connection graph (i.e. cases where a VoF either
splits into multiple VoFs or merges with another VoF during a timestep) are represented
by one node on the data graph. Topologically, the data graph is identical to the new-time
graph except in locations where a single old-time VoF has been split into more than one
node in the new-time graph; in this case, the multiple child nodes in the new time graph
are represented as a single node in the data graph. In general, a user will access graph
connectivity information through the data graph; old- and new-time geometric information
is then accessed through connections with the data graph. Solution updates are computed
using connectivities based on the data graph, and when data storage is allocated, it is
based on the data graph, rather than the old- or new-time graphs. This will simplify
time-dependent computations.

3 Overview of API Design

The pieces of the graph of the discrete space are represented by the classes VolIndex and
FaceIndex, which are elements of the EBChombo software. VolIndex is an abstract index
into cell-centered locations corresponding to the nodes of the graph (VoFs). In EBChombo,
the FaceIndex class is an abstract index into edge-centered locations (connections be-
tween VoFs). To handle the additional needs of multifluid computations, we extend the
FaceIndex class to index into all graph connections between VoFs, including those not
located at a cell face. The class MFIndexSpace is a container for geometric information
at all levels of refinement. The class MFISLevel contains the geometric information for
a given level of refinement. MFISLevel is not part of the public API and is considered
internal to MFIndexSpace. MFISBox represents the intersection between an MFISLevel

7

t

x

y

tnew

told

(a) (b)

Figure 5: Evolution of a connectivity graph in time.In (a), dashed lines illustrate connnec-
tivity of the unshaded phase at a single time level, while solid lines illustrate connectivity
of VoFs between time levels. (b) Data graph for the time-dependent geometry shown in
(a)

and a Box and is used for aggregate access of geometric information. MFISLayout is a set
of MFISBoxes corresponding to the boxes in a DisjointBoxLayout grown by a specified
number of ghost cells.
Along with the data graph, the MFIndexSpace and MFISBox classes contain two

time levels for each resolution, one at an old time told and one at a new time tnew =
told + ∆t. It is assumed that the geometry at a time told ≤ t ≤ tnew is a linear in-
terpolation of the old- and new-time geometries. In particular, the MFISBox function
getDistance(RealVect loc, Real t) returns the signed distance from the point loc
to the nearest multifluid interface. The MFISBox computes this distance by keeping the
distance to the nearest interface at each node at both old and new times, and then in-
terpolating in time and space to compute the distance between loc and the multifluid
interface at time t. The MFIndexSpace class also contains the interface to the function-
ality needed to advance the interface in time. Because it is expected that the method of
advancing the multifluid interface in time will be dependent on the physics of the actual
problem being solved, the MFIndexSpace class is a virtual base class, from which a user
will derive a class which contains the specific method used to advance the interface.
In general, the user only accesses the data graph in the MFIndexSpace and MFISBox

classes. Old and new time geometric information, such as normals, apertures, and cen-
troids are accessed through connections to the data graph.
In an AMR computation with refinement in time, different refinement levels will be

have different old and new times as the hierarchy of levels is advanced in time. Therefore,
except at the initial time when the MFIndexSpace is defined, time variables will depend

8

Concept Chombo MFChombo

ZD —- MFIndexSpace
point IntVect VoF
region Box MFISBox

Union of Rectangles BoxLayout MFISLayout
Rectangular array BaseFab BaseMFCellFAB, BaseMFFaceFAB

Table 1: The concepts represented in Chombo and MFChombo.

on the individual MFISLevels.

4 Data Structures for Graph Representation

4.1 Overview

The class VolIndex is an abstract index into cell-centered locations (VoFs) corresponding
to the nodes of the graph. The class FaceIndex is an abstract index into connections
between VoFs. It is characterized by the pair of VolIndexes that are connected by
the FaceIndex. The possible range of values that can be taken on by a VolIndex

or a FaceIndex is determined by the index space containing the VolIndex. There are
multiple types of FaceIndexes, depending on the relationship between the VoFs connected
by the FaceIndex. The FaceIndex type is determined by an enumeration; there are
(SpaceDim+ 1) types. The enumeration types are named:

enum FaceIndexType {xFace=0, yFace, (zFace,) mfInterface}.

FaceIndex types 0 through (SpaceDim− 1) are face-centered connections between
VoFs, and are identical to the EBChombo conception of FaceIndexes. A FaceIndex of
type mfInterface is a multifluid interface within a cell, connecting two VoFs of different
phases. A FaceIndex of this type can have an arbitrary location in a cell, except at the
face at the edge of a cell, which is not allowed, as mentioned earlier.
The entire time-dependent graph is represented in the virtual class MFIndexSpace,

which stores all the graph connectivity and other geometric information (volume frac-
tions, area fractions, etc). Because the geometry can change as a function of time, the
MFIndexSpace class supports this by maintaining a data graph representation of the time-
dependent geometry, as well as a graph with connectivity in time as well as space. MFISBox
represents a subset of the MFIndexSpace at a particular refinement and over a particular
box in the space, in a particular time interval (told ≤ t ≤ tnew). MFISLayout is a collection
of MFISBoxes distributed over processors associated with an input DisjointBoxLayout.
Because there are multiple time-levels present in the MFIndexSpace, we also introduce

a TimeIndex enumeration when it is necessary to distinguish between time levels:

9

enum TimeIndex {oldTime = 0; newTime, average}.

The average entry will refer to the average of the old and new time states.

4.2 Class MFIndexSpace

The entire time-dependent graph description of the geometry is represented in the class
MFIndexSpace, which stores the data graph, along with the graph connectivity and other
geometric information (volume fractions, area fractions, etc) at two time levels (told and
tnew) and the connectivity of the graph between these two times. The important member
functions of MFIndexSpace are as follows.

• void define(const ProblemDomain& domain,

const RealVect& origin,

const Real& dx,

const Real& initialTime);

Define data sizes. The domain argument defines the domain of the MFIndexSpace
at its finest resolution. The arguments origin and dx specify the location of the
zero vector in the index space and the grid spacing in each coordinate direction at
the finest resolution. The initialTime argument is the solution time at which
the initial geometry is defined. Coarser resolutions of the MFIndexSpace are also
generated in the initialization process.

• void fillMFISLayout(MFISLayout& mfisLayout,

const DisjointBoxLayout& dbl,

const ProblemDomain& domain,

const int& nGhost);

Define an MFISLayout for each box in the input layout dbl grown by the input
ghost cells. The input domain defines the refinement level at which the layout
exists. If the refinement does not exist within the MFIndexSpace, a runtime error
occurs. The argument dbl is the layout over which the data is distributed. If every
box does not lie within the input domain, a runtime error occurs. The nghost

argument defines the number of ghost cells in each coordinate direction. The old-
and new-time levels as well as the data graph for the MFISLayout will be taken
from the given level in the MFIndexSpace.

• int numLevels() const;

Return the number of levels of refinement represented in the MFIndexSpace

• int getLevel(const ProblemDomain& a_domain) const;

Return level index of domain. Return -1 if a_domain does not correspond to any
refinement of the MFIndexSpace.

10

• Real oldTime(int lev) const;

Returns the time at the old time level stored by the MFISLayout at the level lev.

• Real newTime(int lev) const;

Returns the time at the new time level stored by the MFISLayout at the level lev.

• virtual void advanceGeometry(int lev, Real dt)

This function will be provided by the derived class – it advances the geometry at
level lev from tnew to tnew + dt. At the end of this function, the time levels have
been updated, so that the new old-time is the old new-time and the new new-time
is the old new-time + dt. Also, the data graph is updated.

• void createNewDataGraph(int lev)

Reconstitutes the data graph based on the current old- and new-time geometries;
generally called by the advanceGeometry function.

MFIndexSpace can only be accessed through the the Chombo_MFIS singleton class.
The usage pattern follows this model. At some point, one defines the singleton as follows:

MFIndexSpace* mfisPtr = Chombo_MFIS::instance();

mfisPtr->define(domain, origin, dx, time);

Since the MFIndexSpace is a virtual base class, the derived class will contain the func-
tionality necessary to fully define the initial geometric configuration. Whenever one needs
to define an MFISLayout, the usage is as follows:

void makeMFISL(MFISLayout& a_mfisl,

const DisjointBoxLayout& a_grids,

const ProblemDomain& a_domain,

const int& a_nghost)

{

const MFIndexSpace* const mfisPtr = Chombo_MFIS::instance();

assert(mfisPtr->isDefined());

mfisPtr->fillMFISLayout(a_mfisl, a_grids, a_domain, a_nghost);

}

4.3 Class MFISBox

MFISBox represents the geometric information of the domain at a given refinement and
interval in time within the boundaries of a particular box. MFISBox can only be accessed
by using the the MFISLayout interface. Like the MFIndexSpace and MFISLayout classes,
MFISBox has two different time levels, told and tnew, and contains the geometries at each
time level, along with the data graph based on these geometries. Geometric information

11

is also organized by phase. In general, the old- and new-time graphs are hidden from
the user, who instead accesses the data graph for a given MFISBox. Old and new time
geometric information is then accessed through its connections with the data graph.
The important public member functions of MFISBox are as follows:

• IntVectSet getMultiCells(const Box& subbox, int phase) const;

Returns a list all multi-valued cells at the given level of refinement within the input
Box subbox in the data graph for the phase denoted by phase.

• IntVectSet getIrregIVS(const Box& boxin, int phase) const;

Returns the irregular cells of the MFISBox data graph that are within the input
subbox for the given phase. For the purposes of the data graph, any cell which is
irregular in the old- or new-time graphs is considered irregular.

• Vector<VolIndex> getVoFs(const IntVect& iv, int phase);

Gets all the VoFs in the data graph in a particular cell for the given phase.

• Vector<VolIndex> getVoFsNew(const VolIndex a_vof);

For the input VolumeIndex in the data graph, return the VolumeIndexes of all
nodes in the new-time graph which are connected to a_vof. In most cases, this will
return a Vector of length one (one-to-one correspondence between the data graph
VoF and a new-time VoF). The only case where it will return a Vector with a length
greater than one is when a single VoF in the old-time geometry splits into more
than one VoF in the new-time geometry. A return Vector of length 0 indicates
that an old-time VoF has disappeared from the new-time graph (normally because
a multifluid interface has crossed a cell boundary and left the current cell).

• Vector<VolIndex> getVoFsOld(const VolIndex a_vof);

For the input VolumeIndex in the data graph, return the VolumeIndexes of all
nodes in the old-time graph which are connected to a_vof. In most cases, this will
return a Vector of length one (one-to-one correspondence between the data graph
VoF and a old-time VoF). The only case where it will return a Vector with a length
greater than one is when multiple VoFs in the old-time geometry merge into one
VoF in the new-time geometry (and so are represented as a single VoF in the data
graph). A return Vector of length 0 indicates that an new-time VoF is created in
the given cell during the interval from told to tnew (normally because a multifluid
interface has crossed a cell boundary and left the current cell).

• int numVoFs(const IntVect& iv, int phase) const;

Returns the number of VoFs in the data graph in a particular cell for the given
phase.

12

• Vector<FaceIndex> getFaces(const VolIndex& vof,

FaceIndexType faceType,

Side::LoHiSide sd,

int phase);

Gets all faces in the data graph of the type denoted by faceType for the given
VoF and phase. If the faceType is either xFace, yFace, or zFace, the Side sd
denotes whether it is a high or low side face in the direction given. For a multifluid
interface, we determine high or low by the phases themselves. A “high” face is one
that connects the given VoF with a higher phase index, while a “low” face connects
the given VoF with a phase of a lower index number. In a two-phase computation,
only one sd will return a non-empty set of multifluid interface faces.

• bool isRegular(const IntVect& iv, int phase) const;

Returns true if the input cell is a regular VoF in the data graph for the given phase.
A cell is considered regular for the data graph if it is regular in both the old-time
and new-time graphs.

• bool isRegular(const Box& box, int phase) const;

Returns true if every cell in the input Box is a regular VoF in the data graph for the
given phase.

• bool isCovered(const IntVect& iv, int phase) const;

Returns true if the input cell is a covered cell in the data graph for the given phase.
A cell is considered to be “covered” for the purposes of the data graph if it is
covered in both the old-time and new-time graphs.

• bool isCovered(const Box& box, int phase) const;

Returns true if every cell in the input box is a covered cell in the data graph for the
given phase.

• bool isIrregular(const IntVect& iv, int phase) const;

Returns true if the input cell is an irregular cell in the data graph for the given
phase.

• int numFaces(const VolIndex& vofin,

FaceIndexType faceType,

Side::LoHiSide sd) const;

Returns the number of faces the input VoF has in the given type and side (if
faceType is xFace, yFace, or zFace). Returns zero if the VoF has no faces of
the given type. Note that since the VoF indexed by the VolIndex vofin has a
distinguished phase, phase arguments are not used for this function, or any function
using a VolIndex as an argument.

13

• Real volFrac(const VolIndex& vofin) const;

Returns the volume fraction of the input VoF.

• bool isConnected(const VolIndex& vof1,

const VolIndex& vof2) const;

Return true if the two input VoFs are connected by a face (connected by a
FaceIndex of type xFace, yFace, or zFace).

• bool isInterfaceConnected(const VolIndex& vof1,

const VolIndex& vof2) const;

Return true if the two input VoFs are connected at a multifluid interface (through
a FaceIndex of type mfInterface). vof1 and vof2 should be at the same time.

• bool isAllCovered(int phase);

Return true if every cell in the MFISBox is covered (not in the given phase) in the
data graph.

• bool isAllRegular(int phase);

Return true if every cell in the MFISBox is regular (in the domain of the given phase)
in the data graph.

• RealVect normal(const FaceIndex& faceIn, TimeIndex timeIn) const;

Returns the normal to the interface pointed to by faceIn at the time level referred
to by timeIn. Return the zero vector if the answer is undefined (for example, if the
interface referenced by intIn does not exist at the time referenced by timeIn) Note
that no time need be specified, since the time level is given implicitly by faceIn.

• RealVect centroid(const VolIndex& vofin, TimeIndex timeIn) const;

Returns the centroid of the VoF at the time level pointed to by timeIn. Returns
the zero vector if the VoF is regular or covered. The answer is given as a normalized
(by grid spacing) offset from the center of the cell (all numbers range from -0.5 to
0.5).

• RealVect centroid(const FaceIndex& facein, TimeIndex timeIn) const;

Return centroid of input face at the time level indicated by timeIn as a RealVect.
Return the zero vector if the face is covered or regular, or if the face is a timeFace.
The answer is given as a normalized (by grid spacing) offset from the center of the
cell (all numbers range from -0.5 to 0.5).

• Real areaFrac(const FaceIndex& a_vof1, TimeIndex timeIn);

Return the area fraction of the face at the time level indicated by timeIn.

14

• Vector<VolIndex> refine(const VolIndex& coarseVoF) const;

Returns the corresponding set of VoFs from the next finer MFISLevel (factor of two
refinement). The result is only defined if this MFISBox was defined by coarsening.

• VolIndex coarsen(const VolIndex& vofin);

Returns the corresponding VoF from the next coarser MFISLevel (same solution
location, different index space, factor of two refinement ratio).

• void copy(const Box& a_regionFrom, const Interval& Cd,

const Box& a_regionTo,

const MFISBox& a_source, const Interval& Cs);

Copy the information from a_source over box a_regionFrom, to the a_regionTo
box of the current MFISBox. The interval arguments are ignored. This function is
required by the LevelData template class.

• Real getDistance(RealVect& loc, Real time) const

Returns the signed distance from the point loc to the nearest multifluid interface
at the time given. If there is no interface, returns a value larger than the size of the
domain.

4.4 Class MFISLayout

MFISLayout is a collection of MFISBoxes distributed across processors and associ-
ated with a DisjointBoxLayout and a number of ghost cells. In a parallel context,
MFISLayout is the way the user can create parallel, distributed data. MFISLayouts are
null-constructed and are defined by sending them to the fillMFISLayout(...) func-
tion of MFIndexSpace. MFISLayout is constructed around a reference-counted pointer
of an MFISLayoutImplem object so copying MFISLayouts is inexpensive and follows the
reference-counted pointer semantic (changing the copied-to object changes the copied-
from object). Recall that one can coarsen and refine only by a factor of two using the
MFISBox class directly. Because MFISBox archives the information to do this, it is an inex-
pensive operation. Coarsening and refinement using larger factors of refinement must be
done through MFISLayout and it can be expensive, especially in terms of memory usage.
When one sets the maximum levels of refinement and coarsening, MFISLayout creates
mirrors of itself at all intermediate levels of refinement and holds those new MFISLayouts
as member data. Refinement and coarsening is done by threading through these interme-
diate levels. The important functions of MFISLayout follow.

• const MFISBox& operator[] (const DataIndex& a_datInd) const;

Access the MFISBox associated with the input DataIndex. Only constant access is
permitted.

15

• void setMaxRefinementRatio(const int& a_maxRefine);

Sets the maximum level of refinement that this MFISLayout will have to perform.
Creates and holds new MFISLayouts at intermediate levels of refinement. Default
is one (no refinement done).

• setMaxCoarseningRatio(const int& a_maxCoarsen);

Sets the maximum level of coarsening that this MFISLayout will have to perform.
Creates and holds new MFISLayouts at intermediate levels of coarsening. Default
is one (no coarsening done).

• VolIndex coarsen(const VolIndex& a_vof,

const int& a_ratio,

const DataIndex& a_datInd) const;

Returns the index of the VoF corresponding to coarsening the input VoF by the
input ratio. It is an error if the ratio is greater than the maximum coarsening ratio
or if the VoF does not exist at the input data index.

• Vector<VolIndex> refine(const VolIndex& a_vof,

const int& a_ratio,

const DataIndex& a_datInd) const;

Returns the indices of the VoFs corresponding to refining the input VoF by the input
ratio. It is an error if the ratio is greater than the maximum refinement ratio or if
the VoF does not exist at the input data index.

• const BoxLayout& getLayout() const

Return the ghosted layout that underlies the MFISLayout

4.5 Class VolIndex

The class VolIndex is an abstract index into cell-centered locations which corresponds
to the nodes of the data graph. The types of VoF are listed below:

• Regular: VoF has unit volume fraction and has exactly 2*D Faces, each of unit area
fraction.

• Covered: VoF has zero volume fraction and no faces.

• Irregular: Any other valid VoF. These are VoFs which either intersect the multifluid
interface or border a covered cell.

• Invalid: The VoF is incompletely defined. The default when you create a VoF, and
used as the out-of-domain VoF of a boundary Face.

The class VolIndex contains the following important member functions:

16

• IntVect gridIndex() const Returns the IntVect of the VoF.

• int cellIndex() const Returns the cell identifier of the VoF.

4.6 Class FaceIndex

The class FaceIndex is an abstract index into connections between VoFs in the graph.
A FaceIndex exists between two VoFs and is defined by those VoFs. Each FaceIndex

has an associated type, given by the FaceIndexType enumeration in Section 4.1. Every
face referred to by a FaceIndex has an associated area fraction. Note that while a
face-centered FaceIndex can have an area fraction between zero and one, a multifluid
interface can have an area fraction which is greater than one. A FaceIndex with zero
area fraction has no flow area between the VoFs connected by the face. A face with
unity area fraction has an uncovered area equal to an uncovered cell face. Only friend
classes (MFISBox, MFIndexSpace...) may call the defining constructors. Only the null
constructor of FaceIndex should be used by users.
The important member functions of this class are:

• const FaceIndexType& faceType() const

Returns the FaceIndexType of this FaceIndex.

• const IntVect& gridIndex(Side::LoHiSide sd) const

Return the cell of the VolIndex on the sd side of the face. If this FaceIndex is
of type mfInterface, the “low” and “high” sides will be the Vof which is lower or
higher, respectively, in its lexicographic ordering, as discussed in the Chombo design
document.

• const int& cellIndex(Side::LoHiSide sd) const

Return the cell index of the VolIndex on the sd side of the face. If the
FaceIndexType is of mfInterface, “low” and “high” are defined in the same
way as described previously. Returns -1 if that VolIndex is outside the domain of
computation.

• VolIndex getVoF(Side::LoHiSide sd) const

Get the VoF at the given side of the face. Will return a VoF with a negative cell
index if the IntVect of that VoF is outside the domain.

• bool isBoundary() const

Returns true if the face is on the boundary of the domain.

17

5 Data Holders for Embedded Boundary Applications

All multifluid data holders are defined on the data graph of an MFISBox. A BaseMFIVFAB<T>

is an array of data defined in an irregular region of space. The irregular region is specified
by the VolIndexes of an IntVectSet and the data graph of a MFISBox. Multiple data
components per VolIndex may be specified in the BaseMFIVFAB definition.
A BaseMFIFFAB<T> is an array of data defined over an irregular region of space. The

irregular region is specified by the faces of an IntVectSet within the data graph of an
MFISBox. All the faces in a BaseMFIFFAB will have the same FaceIndexType, which
is specified in the BaseMFIFFAB definition. Multiple data components per face may be
specified in the definition. BaseMFCellFAB is a templated class which holds cell-centered
data over a region which is described by a rectangular subset of a multifluid interface
in the data graph of an MFISBox. BaseMFFaceFAB is a templated class which holds
face-centered data over a similar region.

5.1 Class BaseMFIFFAB<T>

A BaseMFIFFAB<T> is a templated array of data defined over an irregular region of space.
Storage is allocated for all phases in a single BaseMFIFFAB. The irregular region is specified
by the faces of an IntVectSet, intersected with the data graph of an MFISBox. All
the faces in a BaseMFIFFAB have the same FaceIndexType, which is specified in the
BaseMFIFFAB definition. Multiple data components per face may be specified in the
definition. The important functions of BaseMFIFFAB follow.

• BaseMFIFFAB(const IntVectSet& iggeom_in,

const MFISBox& a_mfisBox,

FaceIndexType a_faceType,

int nvarin,

bool interiorOnly=false);

Defining constructor. The arguments specify the valid domain in the form of an
IntVectSet, the FaceIndexType of the faces, and the number of data components
per face. The contents are uninitialized. The interiorOnly argument specifies
whether the data holder will span either the surrounding faces of the set or the
interior faces of the set (only relevant if a_faceType is xFace, yFace, or zFace).

• void setVal(T value);

Set a value everywhere. Every data location in this BaseMFIFFAB is set to value.

• void setVal(T value, int a_phase);

Set a value everywhere, for the phase a_phase. Every data location in the given
phase in this BaseMFIFFAB is set.

18

• void copy(const Box& a_intBox, const Interval& Cd,

const Box& a_toBox

const BaseMFIFFAB<T>& a_source, const Interval& Cs);

Copy the contents of another BaseMFIFFAB into this BaseMFIFFAB over the spec-
ified regions and intervals. Both BaseMFIFFABs must be defined for the same
FaceIndexType.

• int nComp() const;

Return the number of data components of this BaseMFIFFAB.

• FaceIndexType type() const;

Return the FaceIndexType of the faces of this BaseMFIFFAB.

• T& operator() (const FaceIndex& edin, int varlocin);

Indexing operator. Return a reference to the contents of this BaseMFIFFAB, at
the specified face and data component, where varlocin may range from zero, to
nvar-1. The returned object is a modifiable lvalue.

5.2 Class BaseMFIVFAB<T>

A BaseMFIVFAB<T> is a templated array of data defined over an irregular region of space.
The irregular region is specified by the VolIndexs of an IntVectSet intersected with the
data graph of an MFISBox. Multiple data components per VolIndex may be specified in
the BaseMFIVFAB definition. The important member functions of BaseMFIVFAB follow.

• BaseMFIVFAB(const IntVectSet& iggeom_in,

const MFISBox& a_mfisBox,

int nvarin = 1);

Defining constructor. Specifies the valid domain in the form of an IntVectSet and
the number of data components per VoF. The contents are uninitialized.

• void setVal(T value);

Set a value everywhere. Every data location in this BaseMFIVFAB is set to value.

• void setVal(T value, int phase);

Set a value everywhere. Every data location in this BaseMFIVFAB for the given
phase is set to value.

• void copy(const Box& a_fromBox, const Interval& destInterval,

const Box& a_toBox,

const BaseMFIVFAB<T>& src, const Interval& srcInterval);

Copy the contents of another BaseMFIVFAB into this BaseMFIVFAB. over the spec-
ified regions and intervals.

19

• int nComp() const;

Return the number of data components of this BaseMFIVFAB.

• T& operator() (const VolIndex& ndin, int varlocin);

Indexing operator. Return a reference to the contents of this BaseMFIVFAB, at
the specified VoF and data component, where varlocin may range from zero to
nvar-1. The returned object is a modifiable lvalue.

5.3 Class BaseMFCellFAB<T>

A BaseMFCellFAB<T> is a templated holder for cell-centered data over a region which
consists of the intersection of a cell-centered box and the data graph in an MFIndexSpace.
At every uncovered VoF in this intersection, the BaseMFCellFAB contains a specified num-
ber of data values. At singly valued cells, the data is stored internally in a BaseFab<T>.
At multiply-valued cells, the data is stored internally in a BaseMFIVFAB. BaseMFCellFAB
provides indexing by VoF and access to the regular data’s pointer for passage to FORTRAN
subroutines. This class does not provide a copy constructor or assignment operator.
The important functions for the class BaseMFCellFAB is defined as follows.

• void define(const MFISBox a_mfis,const Box& a_region,

int a_nVar);

Full define function. Defines the domain of the BaseMFCellFAB to be the intersec-
tion of the input Box and the domain of the input MFISBox. Creates the space for
data at every VoF in this intersection.

• void setVal(T a_value);

Set the value of all data in the container to a_value.

• void setVal(T a_value, int phase);

Set the value of all data for the given phase in the container to a_value.

• void copy(const Box& a_RegionFrom, const Interval& destInt,

const Box& a_RegionTo,

const BaseMFCellFAB<T>& a_srcFab,

const Interval& srcInt);

Copy the data from a_srcFab into the current BaseMFCellFAB regions and intervals
specified.

• int nComp() const;

Return the number of data components of this BaseMFCellFAB.

20

• T& operator()(const VolIndex& a_vof, int a_nVarLoc);

Returns the data at VoF a_vof for variable number a_nVarLoc. Returns a modi-
fiable lvalue.

• BaseFab<T>& getRegFAB();

Returns the regular data holder. This is useful so that the data can be passed to
Fortran using the BaseFab interface.

• getCellDataType(BaseFab<int>& cellTypes)

Fills a basefab¡int¿ with values indicating which type of cell is in each cell of the
BaseFab¡T¿ returned by the getRegFab function. In a regular cell, the value is the
index number of the phase occupying the cell. If the cell is an irregular cell, the
value is -1.

• const IntVectSet& getMultiCells() const;

Returns the IntVectSet of all the multiply-valued cells.

5.4 Class MFCellFAB

An MFCellFAB is a holder for cell-centered floating–point data over a region which con-
sists of the intersection of a cell-centered box and the data graph for a single phase in
an MFISBox. It is an extension of a BaseMFCellFAB<Real> which includes arithmetic
functions. At singly valued cells, the data is stored internally in a FArrayBox. At multiply-
valued cells, the data is stored internally in a BaseMFIVFAB<Real>. MFCellFAB provides
indexing by VoF and access to the regular data’s pointer for passage to FORTRAN subrou-
tines. This class does not provide a copy constructor or assignment operator. MFCellFAB
has all the functions of BaseMFCellFAB<Real> and the following extra functions:

• void reMap()

Updates the data in this MFCellFab to the current data graph. Interpolates existing
data as necessary to fit the current data graph. This function is generally called
for each MFCellFab after the geometry in the underlying MFIndexSpace has been
advanced.

• FArrayBox& getRegFAB();

Returns the regular data holder. This is useful so that the data can be passed to
Fortran using the BaseFab interface.

• MFCellFAB& operator+=(const Real& a_valin);

MFCellFAB& operator-=(const Real& a_valin);

MFCellFAB& operator*=(const Real& a_valin);

MFCellFAB& operator/=(const Real& a_valin);

21

Add (or subtract or multiply or divide) a_valin to (or from or by or into) every
data value in the holder.

• MFCellFAB& operator+=(const MFCellFAB& a_fabin);

MFCellFAB& operator-=(const MFCellFAB& a_fabin);

MFCellFAB& operator*=(const MFCellFAB& a_fabin);

MFCellFAB& operator/=(const MFCellFAB& a_fabin);

Add (or subtract or multiply or divide) the internal values to (or from or by or into)
the values in fabin over the intersection of the domains of the two holders and put
the result in the current holder. It is an error if the two holders do not contain the
same number of variables or the same data graph.

5.5 Class BaseMFFaceFAB<T>

A BaseMFFaceFAB<T> is a templated holder for face-centered data over a region which
consists of the intersection of a cell-centered box and the faces of a given FaceIndexType
in the data graph of an MFISBox. At every uncovered face in this intersection, the
BaseMFFaceFAB contains a specified number of data values. At singly valued faces, the
data is stored internally in a BaseFab<T>. At multiply-valued cells, the data is stored
internally in a BaseMFIFFAB. BaseMFFaceFAB provides indexing by face and access to
the regular data’s pointer for passage to FORTRAN subroutines. This class does not
provide a copy constructor or assignment operator. The important functions for the class
BaseMFFaceFAB are defined as follows.

• void define(const MFISBox& a_mfis,

const Box& a_region,

FaceIndexType a_faceType,

int a_nVar,

bool interiorOnly = false);

Full define function. Defines the domain of the BaseMFFaceFAB to be the in-
tersection of the input Box and the faces of the input MFISBox for the given
FaceIndexType. Creates the space for data at every face in this intersection.
The interiorOnly argument specifies whether the data holder will span either
the surrounding faces of the set or the interior faces of the set (only relevant if
a_faceType is xFace, yFace, or zFace).

• void setVal(T a_value);

Set the value of all data in the container to a_value.

• void setVal(T a_value, int phase);

Set the value of all data in the container which is of the given phase to a_value.

22

• FaceIndexType type() const;

Return the FaceIndexType of the faces of this BaseMFFaceFAB.

• T& operator()(const FaceIndex& a_face, int a_nVarLoc);

Returns the data at face a_face for variable number a_nVarLoc. Returns a mod-
ifiable lvalue.

• void copy(const Box& a_RegionFrom, const Interval& a_destInt,

const Box& a_RegionTo,

const MFFaceFAB<T>& a_source,

const Interval& a_srcInt);

Copy the data from a_source into the current BaseMFFaceFAB over regions and
intervals specified. The two MFFaceFABs must have the same FaceIndexType and
be based on the same data graph.

• BaseFab<T>& getRegFAB();

Returns the regular data holder. This is useful so that the data can be passed to
Fortran using the BaseFab interface.

• const IntVectSet& getMultiCells() const;

Returns the IntVectSet of all the multiply-valued cells.

5.6 Class MFFaceFAB

An MFFaceFAB is a holder for face-centered floating-point data over a region which con-
sists of the intersection of a face-centered box and an MFIndexSpace. It is an exten-
sion of a BaseMFFaceFAB<Real> which includes arithmetic functions. At single-valued
faces, the data is stored internally in a BaseFab<Real>. At multiply-valued faces, the
data is stored internally in a BaseMFIFFAB<Real>. MFFaceFAB has all the functions of
BaseMFFaceFAB<Real> and the following extra functions (note that unlike the corre-
sponding cell-centered class, there is no remap functionality provided. It is assumed that
face-centered data is transient and cannot be remapped.):

• FArrayBox& getRegFAB();

Returns the regular data holder. This is useful so that the data can be passed to
Fortran using the BaseFab interface.

• MFFaceFAB& operator+=(const MFFaceFAB& fabin);

MFFaceFAB& operator-=(const MFFaceFAB& fabin);

MFFaceFAB& operator*=(const MFFaceFAB& fabin);

MFFaceFAB& operator/=(const MFFaceFAB& fabin);

23

Add (or subtract or multiply or divide) the values in a_fabin to (or from or by or
into) the internal values over the intersection of the domains of the two holders and
put the result in the current holder. It is an error if the two holders do not contain
the same number of variables. It is an error if the two holders have different face
directions.

• MFFaceFAB& operator+=(const Real& a_valin);

MFFaceFAB& operator-=(const Real& a_valin);

MFFaceFAB& operator*=(const Real& a_valin);

MFFaceFAB& operator/=(const Real& a_valin);

Add (or subtract or multiply or divide) a_valin to (or from or by or into) every
data value in the holder.

6 Data Structures for Pointwise Iteration

Like EBChombo, MFChombo contains two classes which facilitate pointwise iteration,
VoFIterator and FaceIterator. VoFIterator is used to iterate over every point
in an IntVectSet in a given phase. FaceIterator iterates over faces in an IntVectSet
of a particular FaceIndexType.

6.1 Class VoFIterator

VoFIterator iterates over every uncovered VoF in an IntVectSet inside an MFISBox. Its
important functions are as follows

• VoFIterator(const IntVectSet& a_ivs,

const MFISBox& a_mfisBox,

const int phase);

void define(const IntVectSet& a_ivs,

const MFISBox& a_mfisBox,

const int phase);

Define the VoFIterator with the input IntVectSet and the MFISBox. The
IntVectSet defines the points that will be iterated over and should be contained
within the region of MFISBox. Calls reset() after construction.

• void reset();

Rewind the iterator to its beginning.

• void operator++();

Advance the iterator to its next VoF.

24

• bool ok() const;

Return true if there are more unvisited VoFs for the iterator to cover.

• const VolIndex& operator() () const;

Return the current VoF.

The following routine sets the 0th component of the data holder to a constant value at
each point in the input set.

/******************/

void setPhiToValue(MFCellFAB& a_phi,

const IntVectSet& a_ivs,

const MFISBox& a_mfisBox,

const Real& a_value)

{

int thisPhase = a_phi.phase();

VoFIterator vofit(a_ivs, a_mfisBox, thisPhase);

for(vofit.reset(); vofit.ok(); ++vofit)

{

const VolIndex& vof = vofit();

a_phi(vof, 0) = a_value;

}

}

/******************/

The call to reset() in the above code is unnecessary in this case. One only needs to call
reset() if an iterator is used multiple times.

6.2 Class FaceIterator

The FaceIterator class is used to iterate over faces of a particular FaceIndexType
and phase in an IntVectSet. First we must define FaceStop, the enumeration class
which distinguishes which faces at which a given FaceIterator will stop if it is of the
xFace, yFace, or zFace FaceType. If the FaceIndexType is mfInterface, then the
FaceStp case has no meaning. The entirety of the FaceStop class is given below.

class FaceStop

{

public:

enum WhichFaces{Invalid=-1,

SurroundingWithBoundary=0, HiWithBoundary, LoWithBoundary,

SurroundingNoBoundary , HiNoBoundary , LoNoBoundary,

NUMTYPES};

};

The enumeratives are described as follows:

25

• SurroundingWithBoundary means stop at all faces on the high and low sides of
IntVectSet cells.

• SurroundingNoBoundary means stop at all faces on the high and low sides of
IntVectSet cells, excluding faces on the domain boundary.

• LoWithBoundary means stop at all faces on the low side of IntVectSet cells.

• LoNoBoundary means stop at all faces on the low side of IntVectSet cells, exclud-
ing faces on the domain boundary.

• HiWithBoundary means stop at all faces on the high side of IntVectSet cells.

• LoNoBoundary means stop at all faces on the high side of IntVectSet cells, ex-
cluding faces on the domain boundary.

Now we may define the important interface of FaceIterator:

• FaceIterator(const IntVectSet& a_ivs,

const MFISBox& a_mfisBox,

const int a_phase,

const FaceIndexType& a_faceType,

const FaceStop::WhichFaces& a_location);

void define(const IntVectSet& a_ivs,

const MFISBox& a_mfisBox,

const int a_phase,

const FaceIndexType& a_faceType,

const FaceStop::WhichFaces& a_location);

Defining constructor.

• void reset();

Rewind the iterator to its beginning.

• void operator++();

Advance the iterator to its next face.

• bool ok() const;

Return true if there are more unvisited faces for the iterator to cover.

• const FaceIndex& operator() () const;

Return the current face.

The following routine sets the 0th component of the data holder to a constant value at
each face in the input set, including boundary faces.

26

/******************/

void setFacePhiToValue(MFFaceFAB& a_phi,

const IntVectSet& a_ivs,

const MFISBox& a_mfisBox,

const Real& a_value)

{

int type = a_phi.type();

int phase = a_phi.phase();

FaceIterator faceit(a_ivs, a_mfisBox, phase, type,

FaceStop::SurroundingWithBoundary);

for(faceit.reset(); faceit.ok(); ++faceit)

{

const FaceIndex& face = faceit();

a_phi(face, 0) = a_value;

}

}

/******************/

The call to reset() in the above code is unnecessary in this case. One only needs to call
reset() if an iterator is used multiple times.

7 AMR Tools for Multifluid computations

Our strategy for computing adaptive mesh refinement (AMR) solutions for multifluid
problems will be to refine the multifluid interfaces to the finest level possible. Extending
the AMRTools infrastructure to the multifluid case is straightforward because multifluid
interfaces do not cross coarse-fine interfaces.
As in the “AMRTools” section in [CGL+00], we describe the algorithmic and software

support for implementing AMR algorithms in a multifluid setting. For more detail about
the basic design philosophy for the software in this section, see [CGL+00].

7.1 C++ Classes for Two-Level Operators

7.1.1 The Class MFCoarseAverage

This class sets data on a level equal to an average of the data from a finer level.

• void

define(const MFISLayout& a_fine_domain,

int a_numcomps,

int a_ref_ratio);

Arguments:

– a_fine_domain (not modified): the fine level domain.

27

– a_numcomps (not modified): the number of components of coarse and fine
data sets.

– a_ref_ratio (not modified): the refinement ratio nref .

• void

averageToCoarse(LevelData<MFCellFAB>& a_coarse_data,

const LevelData<MFCellFAB>& a_fine_data);

Replaces coarse data with the average of fine data, in the valid fine domain.
Arguments:

– a_coarse_data (modified): coarse data set, destination of averaging.

– a_fine_data (not modified): fine data set, source of averaging.

7.2 The Class MFFineInterp

This class fills the valid region of a level of data by piecewise linear interpolation from
data on a coarser level of refinement, using the piecewise linear interpolation operator
described in section.

• void

define(const MFISLayout& a_fine_domain,

int a_numcomps,

int a_ref_ratio,

const ProblemDomain& a_problem_domain);

void

define(const MFISLayout& a_fine_domain,

int a_numcomps,

int a_ref_ratio,

const Box& a_problemDomain)

Arguments:

– a_fine_domain (not modified): domain of the fine level.

– a_numcomps (not modified): number of components of the coarse and fine
data.

– a_ref_ratio (not modified): the refinement ratio Nr = ∆x
c/∆xf .

– a_problem_domain (not modified): the problem domain in the fine level index
space.

• void

interpToFine(LevelData<MFCellFAB>& a_fine_data,

28

const LevelData<MFCellFAB>& a_coarse_data);

Replaces fine data by interpolation from coarse data.
Arguments:

– a_fine_data (modified): the fine data set, destination of interpolation.

– a_coarse_data (not modified): the coarse data set, source of interpolation.

7.3 The Class MFPiecewiseLinearFillPatch

This class fills some of the ghost cells of a level of data by piecewise linear interpolation
from data on a coarser level of refinement. It is intended to be used in the context of a
multilevel time-dependent adaptive mesh refinement (AMR) calculation. The algorithm
used is that described in [CGL+00]. The interface described here is slightly more general,
as it allows for the coarse grid data to be a linear combination of the form

ϕc,valid = αϕc,old + (1− α)ϕc,new

Note that cells outside the problem domain are never filled; it is the application devel-
oper’s responsibility to fill them elsewhere according to the application-specific boundary
conditions. Cells outside the computational domain in periodic direction, however, are
considered to be inside the problem domain and are filled.

• void

define(const MFISLayout& a_fine_domain,

const MFISLayout& a_coarse_domain,

int a_num_comps,

const ProblemDomain& a_coarse_problem_domain,

int a_ref_ratio,

int a_interp_radius);

void

define(const MFISLayout& a_fine_domain,

const MFISLayout& a_coarse_domain,

int a_num_comps,

const Box& a_coarse_problem_domain,

int a_ref_ratio,

int a_interp_radius);

Defines domains of the levels and other persistent data.
Arguments:

– a_fine_domain (not modified): domain of fine level.

– a_coarse_domain (not modified): domain of coarse level.

29

– a_num_comps (not modified): number of components of state vector.

– a_coarse_problem_domain (not modified): problem domain on the coarse
level.

– a_ref_ratio (not modified): refinement ratio.

– a_interp_radius (not modified): number of layers of fine ghost cells to fill
by interpolation.

• void

fillInterp(LevelData<MFCellFAB>& a_fine_data,

const LevelData<MFCellFAB>& a_old_coarse_data,

const LevelData<MFCellFAB>& a_new_coarse_data,

Real a_time_interp_coef,

int a_src_comp,

int a_dest_comp,

int a_num_comp);

Fills the ghost cells of the fine level data by interpolation.
Arguments:

– a_fine_data (modified): fine data whose ghost cells are to be filled.

– a_old_coarse_data (not modified): coarse level data at the old time.

– a_new_coarse_data (not modified): coarse level data at the new time.

– a_time_interp_coef (not modified): time interpolation coefficient, α. It is
required that 0 ≤ α ≤ 1.

– a_src_comp (not modified): starting coarse data component.

– a_dest_comp (not modified): starting fine data component.

– a_num_comp (not modified): number of data components to be interpolated.

7.4 The Class MFQuadCFInterp

The class MFQuadCFInterp interpolates data onto the ghost cells on the faces of a
LevelData<MFCellFAB>, using the algorithm described in [CGL+00]. It uses one-sided
differencing in places where the stencil to do full centered differencing is partially covered
by finer grids. The user interface of MFQuadCFInterp is given as follows.

• void define(const MFISLayout& a_fineBoxes,

const MFISLayout* a_coarBoxes,

Real a_dx,

int a_refRatio,

int a_nComp,

const ProblemDomain& a_domf);

30

void define(const MFISLayout& a_fineBoxes,

const MFISLayout* a_coarBoxes,

Real a_dx,

int a_refRatio,

int a_nComp,

const Box& a_domf);

Full define function. This makes all coarse-fine information and sets internal vari-
ables.
Arguments:

– a_fineBoxes (not modified): The grids at the current level.

– a_coarBoxes (not modified): The grids at the next coarser level in the AMR
hierarchy.

– a_dx (not modified): The grid spacing at the current level.

– a_refRatio (not modified): The refinement ratio between this level and the
next coarser level in the AMR hierarchy.

– a_nComp (not modified): The number of components in the data to be inter-
polated.

– a_domf (not modified): The domain at the current level.

• void coarseFineInterp(LevelData<MFCellFAB>& a_phif,

const LevelData<MFCellFAB>& a_phic) const;

Coarse-fine interpolation operator. Fills all the ghost cells on all the faces of the
LevelData<MFCellFAB> a_phif with values interpolated with a_phic.
Arguments:

– a_phif (modified): The solution at the current level.

– a_phic (not modified): The solution at the next coarser level in the AMR
hierarchy.

7.5 The Class MFLevelFluxRegister

MFLevelFluxRegister manages the manipulations at coarse-fine boundaries associated
with maintaining conservation form of cell-centered discretizations of the divergence
operator, using the algorithm described in [CGL+00]. Unlike the previous operators,

MFLevelFluxRegister holds data, corresponding to the flux register δ ~F f defined in
[CGL+00] The class also manages the manipulation of that data.
The user interface for MFLevelFluxRegister is as follows.

31

• void define(const MFISLayout& a_dbl,

const MFISLayout& a_dblCoarse,

const ProblemDomain& a_dProblem,

int a_nRefine,

int a_nComp);

void define(const MFISLayout& a_dbl,

const MFISLayout& a_dblCoarse,

const Box& a_dProblem,

int a_nRefine,

int a_nComp);

Defines the internal state of the flux register, allocating space for the register itself,
as well as the indexing information required to perform the other operations.
Arguments:

– a_dbl (not modified): The grids at the current level.

– a_dblCoarse (not modified): The grids at the next coarser level in the AMR
hierarchy.

– a_dProblem (not modified): The domain at the current level.

– a_nRefine (not modified): The refinement ratio between this level and the
next coarser level.

– a_nComp (not modified): The number of variables used in the computation.

• void setToZero() Initializes the register to all zeros.

• void incrementCoarse(MFFaceFAB& a_coarseFlux,

Real a_scale,

const DataIndex& a_coarsePatchIndex,

const Interval& a_srcInterval,

const Interval& a_dstInterval,

int a_dir);

Increments the register with data from a_coarseFlux, multiplied by a_scale

(α): δF f
d := δF f

d + αF c
d , for all of the d-faces where the input flux (de-

fined on a single rectangle) coincide with the d-faces on which the flux regis-
ter is defined. a_coarseFlux contains fluxes in the a_dir direction for the
grid a_dblCoarse[a_coarsePatchIndex]. Only the registers corresponding
to the low faces of a_dblCoarse[a_coarsePatchIndex] in the a_dir direc-
tion are incremented (this avoids double-counting at coarse-coarse interfaces.
a_srcInterval gives the Interval of components of a_coarseFlux that cor-
respond to a_dstInterval of components of the flux register.
Arguments:

32

– a_coarseFlux (not modified): Flux to put into the flux register. This is not
const because its box is shifted back and forth - no net change occurs.

– a_scale (not modified): Factor by which to multiply a_coarseFlux in flux
register.

– a_coarsePatchIndex (not modified): Index which corresponds to which box
in the LevelData<MFCellFAB> solution from which a_coarseFlux was cal-
culated.

– a_srcInterval (not modified): The Interval of components to put into
the flux register.

– a_dstInterval (not modified): The Interval of components of the flux
register into which the flux data is put.

– a_dir (not modified): Direction of faces upon which fluxes live.

• void incrementFine(MFFaceFAB& a_fineFlux,

Real a_scale,

const DataIndex& a_finePatchIndex,

const Interval& a_srcInterval,

const Interval& a_dstInterval,

int a_dir,

Side::LoHiSide a_sd);

Increments the register with the average over each face of data from a_fineFlux,
scaled by a_scale (α): δF f

d = δF f
d + α < F f

d >, for all of the d-faces where
the input flux (defined on a single rectangle) cover the d-faces on which the flux
register is defined. a_fineFlux contains fluxes in the a_dir direction for the
grid a_dbl[a_finePatchIndex]. Only the register corresponding to the direction
a_dir and the side a_sd is initialized. a_srcInterval and a_dstInterval are
as above.
Arguments:

– a_fineFlux (not modified): Flux to put into the flux register. This is not
const because its box is shifted back and forth - no net change occurs.

– a_scale (not modified): Factor by which to multiply a_fineFlux in flux
register.

– a_finePatchIndex (not modified): Index which corresponds to which box in
the LevelData<MFCellFAB> solution from which a_fineFlux was calculated.

– a_srcInterval (not modified): The Interval of components to put into
the flux register.

– a_dstInterval (not modified): The Interval of components of the flux
register into which the flux data is put.

33

– a_dir (not modified): Direction of faces upon which fluxes live.

– a_sd (not modified): Side of the fine face where coarse-fine interface lies.

• void reflux(LevelData<MFCellFAB>& a_uCoarse,

const Interval& a_coarse_interval,

const Interval& a_flux_interval,

Real a_scale);

Increments a_uCoarse with the reflux divergence of the contents of the flux regis-
ter, scaled by a_scale (α): U c := U c + αDR(δ ~F). a_flux_interval gives the
Interval of components of the flux register that correspond to a_coarse_interval
of components of a_uCoarse.
Arguments:

– a_uCoarse (modified): LevelData<MFCellFAB> that gets modified by re-
fluxing.

– a_coarse_interval (not modified): The Interval of components to put
into a_uCoarse.

– a_flux_interval (not modified): The Interval of components to use from
the flux register.

– a_scale (not modified): Factor by which to scale the flux register.

References

[CGL+00] P. Colella, D. T. Graves, T. J. Ligocki, D. F. Martin, D. Modiano, D. B.
Serafini, and B. Van Straalen. Chombo Software Package for AMR Applications
- Design Document. unpublished, 2000.

[GLN+99] Denis Gueyffier, Jie Li, Ali Nadim, Ruben Scardovelli, and Stephane Zaleski.
Volume-of-fluid interface tracking with smooth surface stress methods for three
dimensional flows. J. Comput. Phys., 152:423–456, 1999.

[JC98] Hans Johansen and Phillip Colella. A cartesian grid embedded boundary
method for Poisson’s eqaution on irregular domains. J. Comput. Phys., 1998.

[MC00] D. Modiano and P. Colella. A higher-order embedded boundary method for
time-dependent simulation of hyperbolic conservation laws. In ASME 2000

Fluids Engineering Division Summer Meeting, 2000.

34

